Formula Sheet For the Final Exam in Calculus 135 Fall 2001

Theorem: $\lim_{x \to a} f(x) = L$ if and only if $\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = L$ This theorem says that $\lim_{x \to a} f(x)$ exists if and only if: 1. $\lim_{x \to a^+} f(x)$ exists and 2. $\lim_{x \to a^-}$ exists and 3. Both limits in 1. and 2. are equal. **Definition:** f is **continuous** at a if the following conditions are satisfied :

1. f(a) is defined. 2. $\lim_{x \to a} f(x)$ exists 3. $\lim_{x \to a} f(x) = f(a)$

Definition:
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
 so $f'(a) = f'(x)\Big|_{x=a} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$

f is **differentiable** at a if f'(a) exists.

Definition: The differential dy is: dy = f'(x)dx. Compare with $\Delta y = f(x + \Delta x) - f(x)$. $f(a + \Delta x) \approx f(a) + dy = f(a) + f'(a)dx$

Graphing and Optimization. Local max and min of a function f can occur only at **critical points** (any point x in the domain of f such that f'(x) = 0 or f'(x) does not exist). **Absolute max and min** occur only at critical points or endpoints. **Inflection points** are points (x, f(x))where the concavity of f changes and can occur only where f''(x) is zero or does not exist. The line x = a is a **vertical asymptote** of the graph of a function f if $\lim_{x \to a^+} = +\infty$ or $= -\infty$, or if $\lim_{x \to a^-} = +\infty$ or $= -\infty$,

The line y = b is a **horizontal asymptote** of the graph of f if $\lim_{x \to +\infty} f(x) = b$ or $\lim_{x \to -\infty} f(x) = b$

Basic Fact: f'(a) is the slope of the tangent line to the graph of f at x = a

Basic log and exp laws: $e^{\ln x} = x$ for x > 0 $\ln e^x = x$ for all real numbers x $\ln(mn) = \ln m + \ln n$ $\ln \frac{m}{n} = \ln m - \ln n$ $\ln m^n = n \ln m$ $\ln 1 = 0$ $\ln e = 1$ $e^a e^b = e^{a+b}$ $\frac{e^a}{e^b} = e^{a-b}$ $(e^a)^b = e^{ba}$ $e^0 = 1$ $e^1 = e^{a+b}$ **Basic Trig Identities:** $\sin^2 x + \cos^2 x = 1$ $\sin(-x) = -\sin x$ $\cos(-x) = \cos x$ $\sin(2\pi + x) = \sin x$ $\cos(2\pi + x) = \cos x$ 360 degrees $= 2\pi$ radians. $\tan x = \frac{\sin x}{\cos x}$ $\cot x = \frac{\cos x}{\sin x}$ $\sec x = \frac{1}{\cos x}$ $\csc x = \frac{1}{\sin x}$

Definition: $f(x_1)\Delta x + f(x_2)\Delta x + \dots + f(x_n)\Delta x$ is a **Riemann sum** for a function f corresponding to a partition of the interval [a, b] into n subintervals of equal width $\Delta x = \frac{(b-a)}{n}$, if x_1 is in the first subinterval, x_2 is in the second subinterval, etc.

Definition: The **definite integral of** f from a to b, written $\int_a^b f(x) dx$, is defined to be the limit as $n \to \infty$ of such Riemann sums, if the limit exists (for all choices of representative points $x_1, x_2, \ldots x_n$ in the n subintervals).

Thus, $\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \left[f(x_1)\Delta x + f(x_2)\Delta x + \dots + f(x_n)\Delta x \right]$

Theorem: Let G be an antiderivative of f on an interval I. Then every antiderivative F of f on I must be of the form F(x) = G(x) + C where C is a constant.

Fact: Let f be continuous and nonnegative on [a, b], then $\int_{a}^{b} f(x) dx$ is equal to the **area of the** region under the graph of f on [a, b]. If f is sometimes negative on [a, b] then $\int_{a}^{b} f(x) dx$ is equal to the **area of the region above** [a, b] minus the **area of the region below** [a, b]. The Fundamental Theorem of Calculus: Let f be continuous on the closed interval [a, b], then $\int_{a}^{b} f(x)dx = F(b) - F(a)$ where F is any antiderivative of f (that is F'(x) = f(x)).

Definition: The average value of an integrable function f over [a, b] is: $\frac{1}{b-a} \int_{a}^{b} f(x) dx$

Differentiation Rules and Integration Rules

$$(kx)' = k$$
 $(cf(x))' = cf'(x)$
 $\int k \, dx = kx + C$
 $\int cf(x) \, dx = c \int f(x) \, dx$
 $(x^r)' = rx^{r-1}$
 $\int x^r \, dx = \frac{x^{r+1}}{r+1} + C \text{ for } r \neq -1$
 $[f(x) \pm g(x)]' = f'(x) \pm g'(x)$
 $\int [f(x) \pm g(x)] \, dx = \int f(x) \, dx \pm \int g(x) \, dx$
 $(e^x)' = e^x$
 $\int e^x \, dx = e^x + C$
 $(\ln x)' = \frac{1}{x}$
 $\int cos x \, dx = \sin x + C$
 $(\cos x)' = -\sin x$
 $(\cos x)' = -\sin x$
 $\int \sin x \, dx = -\cos x + C$
 $(\tan x)' = \sec^2 x$
 $\int \sec^2 x \, dx = \tan x + C$

Chain Rule: If h(x) = g[f(x)], then h'(x) = g'(f(x)) * f'(x) Equivalently, if we write y = h(x) = g(u), where u = f(x), then $\frac{dy}{dx} = \frac{dy}{du} * \frac{du}{dx}$ **Integration by Substitution:** Let u = g(x) and F(x) be the antiderivative of f(x). Then

Integration by Substitution: Let u = g(x) and F(x) be the antiderivative of f(x). Then du = g'(x)dx and $\int f(g(x))g'(x)dx = \int f(u)du = F(u) + C$ Also, $\int_{a}^{b} f(g(x))g'(x)dx = \int_{g(a)}^{g(b)} f(u)du = F(g(b)) - F(g(a))$ **Product Rule:** [f(x) * g(x)]' = f'(x) * g(x) + g'(x) * f(x)

Quotient Rule:
$$\left[\frac{f(x)}{g(x)}\right]' = \frac{g(x) * f'(x) - f(x) * g'(x)}{g^2(x)}$$

Properties of the Definite Integral

 $\int_{a}^{a} f(x) dx = 0 \text{ (same integration limits)} \quad \int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx \text{ (exchange integration limits)}$ $\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx \text{ where } a < c < b.$

Calculus in Economics Definitions, from section 3.4:

The demand equation relates price per unit p and number of units x. It can be solved for p as a function of x, or x as a function of p. Revenue R = px. (Here usually price p is written as a function of x, using the demand equation, so that R becomes a function of x only.) Profit P equals revenue R minus total cost C. Average cost $\overline{C}(x) = \frac{C(x)}{x}$