Theorem: $\lim _{x \rightarrow a} f(x)=L$ if and only if $\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{-}} f(x)=L$
This theorem says that $\lim _{x \rightarrow a} f(x)$ exists if and only if:

1. $\lim _{x \rightarrow a^{+}} f(x)$ exists and $\quad 2$. $\lim _{x \rightarrow a^{-}}$exists and \quad. Both limits in 1. and 2. are equal.

Definition: f is continuous at a if the following conditions are satisfied :

1. $f(a)$ is defined.
2. $\lim _{x \rightarrow a} f(x)$ exists
3. $\lim _{x \rightarrow a} f(x)=f(a)$

Definition: $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \quad$ so $\quad f^{\prime}(a)=\left.f^{\prime}(x)\right|_{x=a}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$
f is differentiable at a if $f^{\prime}(a)$ exists.
Definition: The differential dy is: $d y=f^{\prime}(x) d x$. Compare with $\Delta y=f(x+\Delta x)-f(x)$.
$f(a+\Delta x) \approx f(a)+d y=f(a)+f^{\prime}(a) d x$
Graphing and Optimization. Local max and min of a function f can occur only at critical points (any point x in the domain of f such that $f^{\prime}(x)=0$ or $f^{\prime}(x)$ does not exist). Absolute \max and min occur only at critical points or endpoints. Inflection points are points $(x, f(x))$ where the concavity of f changes and can occur only where $f^{\prime \prime}(x)$ is zero or does not exist. The line $x=a$ is a vertical asymptote of the graph of a function f if $\lim _{x \rightarrow a^{+}}=+\infty$ or $=-\infty$, or if $\lim _{x \rightarrow a^{-}}=+\infty$ or $=-\infty$,
The line $y=b$ is a horizontal asymptote of the graph of f if $\lim _{x \rightarrow+\infty} f(x)=b$ or $\lim _{x \rightarrow-\infty} f(x)=b$
Basic Fact: $\quad f^{\prime}(a)$ is the slope of the tangent line to the graph of f at $x=a$
Basic log and exp laws: $e^{\ln x}=x$ for $x>0 \quad \ln e^{x}=x$ for all real numbers x
$\ln (m n)=\ln m+\ln n \quad \ln \frac{m}{n}=\ln m-\ln n \quad \ln m^{n}=n \ln m \quad \ln 1=0 \quad \ln e=1$
$e^{a} e^{b}=e^{a+b} \quad \frac{e^{a}}{e^{b}}=e^{a-b} \quad\left(e^{a}\right)^{b}=e^{b a} \quad e^{0}=1 \quad e^{1}=e$
Basic Trig Identities: $\sin ^{2} x+\cos ^{2} x=1 \quad \sin (-x)=-\sin x \quad \cos (-x)=\cos x$
$\sin (2 \pi+x)=\sin x \quad \cos (2 \pi+x)=\cos x \quad 360$ degrees $=2 \pi$ radians.
$\tan x=\frac{\sin x}{\cos x} \quad \cot x=\frac{\cos x}{\sin x} \quad \sec x=\frac{1}{\cos x} \quad \csc x=\frac{1}{\sin x}$
Definition: $f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+\cdots+f\left(x_{n}\right) \Delta x$ is a Riemann sum for a function f corresponding to a partition of the interval $[a, b]$ into n subintervals of equal width $\Delta x=\frac{(b-a)}{n}$, if x_{1} is in the first subinterval, x_{2} is in the second subinterval, etc.
Definition: The definite integral of f from a to \mathbf{b}, written $\int_{a}^{b} f(x) d x$, is defined to be the limit as $n \rightarrow \infty$ of such Riemann sums, if the limit exists (for all choices of representative points $x_{1}, x_{2}, \ldots x_{n}$ in the n subintervals).
Thus, $\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty}\left[f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+\cdots+f\left(x_{n}\right) \Delta x\right]$
Theorem: Let G be an antiderivative of f on an interval I. Then every antiderivative F of f on I must be of the form $F(x)=G(x)+C$ where C is a constant.
Fact: Let f be continuous and nonnegative on $[a, b]$, then $\int_{a}^{b} f(x) d x$ is equal to the area of the region under the graph of f on $[a, b]$. If f is sometimes negative on $[a, b]$ then $\int_{a}^{b} f(x) d x$ is equal to the area of the region above $[a, b]$ minus the area of the region below $[a, b]$.

The Fundamental Theorem of Calculus: Let f be continuous on the closed interval $[a, b]$, then $\int_{a}^{b} f(x) d x=F(b)-F(a)$ where F is any antiderivative of f (that is $F^{\prime}(x)=f(x)$).
Definition: The average value of an integrable function f over $[a, b]$ is: $\frac{1}{b-a} \int_{a}^{b} f(x) d x$

Differentiation Rules

$(k x)^{\prime}=k$
$(c f(x))^{\prime}=c f^{\prime}(x)$
$\left(x^{r}\right)^{\prime}=r x^{r-1}$
$[f(x) \pm g(x)]^{\prime}=f^{\prime}(x) \pm g^{\prime}(x)$
$\left(e^{x}\right)^{\prime}=e^{x}$
$(\ln x)^{\prime}=\frac{1}{x}$
$(\sin x)^{\prime}=\cos x$
$(\cos x)^{\prime}=-\sin x$
$(\tan x)^{\prime}=\sec ^{2} x$
and Integration Rules

$$
\begin{aligned}
& \int k d x=k x+C \\
& \int c f(x) d x=c \int f(x) d x \\
& \int x^{r} d x=\frac{x^{r+1}}{r+1}+C \text { for } r \neq-1 \\
& \int[f(x) \pm g(x)] d x=\int f(x) d x \pm \int g(x) d x \\
& \int e^{x} d x=e^{x}+C \\
& \int \frac{1}{x} d x=\ln |x|+C \\
& \int \cos x d x=\sin x+C \\
& \int \sin x d x=-\cos x+C \\
& \int \sec ^{2} x d x=\tan x+C
\end{aligned}
$$

Chain Rule: If $h(x)=g[f(x)]$, then $h^{\prime}(x)=g^{\prime}(f(x)) * f^{\prime}(x) \quad$ Equivalently, if we write $y=h(x)=g(u)$, where $u=f(x)$, then $\frac{d y}{d x}=\frac{d y}{d u} * \frac{d u}{d x}$
Integration by Substitution: Let $u=g(x)$ and $F(x)$ be the antiderivative of $f(x)$. Then $d u=g^{\prime}(x) d x$ and $\int f(g(x)) g^{\prime}(x) d x=\int f(u) d u=F(u)+C$
Also, $\int_{a}^{b} f(g(x)) g^{\prime}(x) d x=\int_{g(a)}^{g(b)} f(u) d u=F(g(b))-F(g(a))$
Product Rule: $[f(x) * g(x)]^{\prime}=f^{\prime}(x) * g(x)+g^{\prime}(x) * f(x)$
Quotient Rule: $\left[\frac{f(x)}{g(x)}\right]^{\prime}=\frac{g(x) * f^{\prime}(x)-f(x) * g^{\prime}(x)}{g^{2}(x)}$
Properties of the Definite Integral
$\int_{a}^{a} f(x) d x=0$ (same integration limits) $\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x$ (exchange integration limits) $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$ where $a<c<b$.

Calculus in Economics Definitions, from section 3.4:

The demand equation relates price per unit p and number of units x. It can be solved for p as a function of x, or x as a function of p. Revenue $R=p x$. (Here usually price p is written as a function of x, using the demand equation, so that R becomes a function of x only.) Profit P equals revenue R minus total cost C. Average cost $\bar{C}(x)=\frac{C(x)}{x}$

